Bayesian Mixtures of Autoregressive Models

نویسندگان

  • Ori Rosen
  • Robert Kohn
چکیده

In this paper we propose a class of time-domain models for analyzing possibly nonstationary time series. This class of models is formed as a mixture of time series models, whose mixing weights are a function of time. We consider specifically mixtures of autoregressive models with a common but unknown lag. To make the methodology work we show that it is necessary to first partition the data into small non-overlapping segments, so that all observations within one segment are always allocated to the same component. The model parameters, including the number of mixture components, are then estimated via Markov chain Monte Carlo methods. The methodology is illustrated with simulated and real data. Supplemental materials are available online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Bayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption

The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bay...

متن کامل

Model-Based Clustering of Sequential Data Using ARMA Mixtures

Most existing clustering methods can only work with fixed-dimensional representations of data patterns. In this paper, we study the clustering of data patterns that are represented as sequences or time series possibly of different lengths. We propose a model-based approach to this problem using mixtures of autoregressive moving average (ARMA) models. We derive an expectation-maximization (EM) a...

متن کامل

Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran

Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...

متن کامل

Time series clustering with ARMA mixtures

Clustering problems are central to many knowledge discovery and data mining tasks. However, most existing clustering methods can only work with fixed-dimensional representations of data patterns. In this paper, we study the clustering of data patterns that are represented as sequences or time series possibly of different lengths. We propose a model-based approach to this problem using mixtures ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010